Switching Behaviors of Graphene-Boron Nitride Nanotube Heterojunctions
نویسندگان
چکیده
High electron mobility of graphene has enabled their application in high-frequency analogue devices but their gapless nature has hindered their use in digital switches. In contrast, the structural analogous, h-BN sheets and BN nanotubes (BNNTs) are wide band gap insulators. Here we show that the growth of electrically insulating BNNTs on graphene can enable the use of graphene as effective digital switches. These graphene-BNNT heterojunctions were characterized at room temperature by four-probe scanning tunneling microscopy (4-probe STM) under real-time monitoring of scanning electron microscopy (SEM). A switching ratio as high as 10(5) at a turn-on voltage as low as 0.5 V were recorded. Simulation by density functional theory (DFT) suggests that mismatch of the density of states (DOS) is responsible for these novel switching behaviors.
منابع مشابه
Origin of band gaps in graphene on hexagonal boron nitride
Recent progress in preparing well-controlled two-dimensional van der Waals heterojunctions has opened up a new frontier in materials physics. Here we address the intriguing energy gaps that are sometimes observed when a graphene sheet is placed on a hexagonal boron nitride substrate, demonstrating that they are produced by an interesting interplay between structural and electronic properties, i...
متن کاملPhotoinduced doping in heterostructures of graphene and boron nitride.
The design of stacks of layered materials in which adjacent layers interact by van der Waals forces has enabled the combination of various two-dimensional crystals with different electrical, optical and mechanical properties as well as the emergence of novel physical phenomena and device functionality. Here, we report photoinduced doping in van der Waals heterostructures consisting of graphene ...
متن کاملDesign of boron vacancy enhanced spin filtering graphene/BN zigzag nanoribbon heterojunctions
The spin-polarized electronic transport properties of zigzag graphene nanoribbons (ZGNRs) and boron nitride nanoribbons (ZBNNRs) heterojunctions with a boron vacancy are investigated by using nonequilibrium Green's function and density functional theory, especially under an external electric field. The model we used in this paper is chosen from the last essay we researched, the I–V curves in th...
متن کاملEffect of electric field on the band structure of graphene/boron nitride and boron nitride/boron nitride bilayers
Related Articles Polarity-dependent photoemission spectra of wurtzite-type zinc oxide Appl. Phys. Lett. 100, 051902 (2012) Growth and valence band offset measurement of PbTe/InSb heterojunctions Appl. Phys. Lett. 100, 052108 (2012) The bound states of Fe impurity in wurtzite GaN Appl. Phys. Lett. 100, 041904 (2012) A comparative density functional study of the low pressure phases of solid ZnX, ...
متن کاملHyperspectral imaging of structure and composition in atomically thin heterostructures.
Precise vertical stacking and lateral stitching of two-dimensional (2D) materials, such as graphene and hexagonal boron nitride (h-BN), can be used to create ultrathin heterostructures with complex functionalities, but this diversity of behaviors also makes these new materials difficult to characterize. We report a DUV-vis-NIR hyperspectral microscope that provides imaging and spectroscopy at e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2015